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Abstract

Strong Planning and Forecast Horizons

in a Convex Production Planning Problem

0 by

J. T. Teng, G. L. Thompson, and S. P. Sethi

We consider a production-inventory planning problem with time

varying demands, convex production costs, and a warehouse capacity

constraint. It is solved by use of the Lagrangian form of the

maximum principle. The possible existence of strong planning and

forecast horizons is demonstrated. When they exist, they permit

the breaking up of the whole problem into a set of smaller

problems which can be solved independently, because optimal

decisions up to a strong planning horizon are completely

independent of demand data beyond the next forecast horizon. A

o 0forward branch and bound algorithm is developed to determine such

horizons and to solve the whole problem.0
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1. Introduction

This paper deals with a production planning problem which has

'0 a time-varying demand. In particular we consider the problem of

finding a production schedule over a finite period [0,T] for a

product having: (1) deterministic exogenous demand, (2) strictly

convex production costs, (3) strictly increasing inventory costs

and (4) and warehouse capacity constraint. This is an extension

of a problem solved by Modigliani and Hohn [5]. Kleindorfer and

Lieber [1] have treated a similar problem using the extrapolation

oapproach in an optimal control framework; see also Thompson and

Sethi £11). We formulate the problem as an optimal control

problem and solve it by using the Lagrangian form of the maximum

principle. First, we characterize the form of the optimal

production rate rule and inventory level rule. We then find

strong planning and strong forecast horizons which permit the

o decomposition of the whole problem into a set of smaller problems,

because the optimal decisions during the period up to the strong

0 planning horizon are completely independent of the data beyond the

o corresponding forecast horizon. Finally, we derive a forward

branch and bound algorithm to solve the whole problem and give a

0 numerical example to illustrate the algorithm.

o Earlier planning horizon results for production-inventory

problems, obtained by using dynamic programming and variational

0 arguments, have been given by Kunreuther and Morton £2, 3],

o Modigliani and Hohn £5), and Wagner and Whitin [12). Other

planning horizon results, derived by applying optimal control

0 theory, were given by Kleindorfer and Lieber [1], Lieber £4],

Morton £6), Pekelman (7, 8), and Thompson, Sethi, and Teng £10).
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2. The Model and Its Solution

Consider a firm producing a homogeneous good and having an

0 inventory warehouse. Define the following quantities:

I(t): inventory level at time t (state variable),

u(t): production rate at time t (control variable),

d(t): demand rate at time t (exogeneous variable); bounded
and differentiable for all t>0,

T: length of planning period,

f(u): strictly convex nonnegative increasing production
cost; twice differentiable for all uO,

o h(I): strictly increasing nonnegative inventory holding
cost; differentiable for all t>O,

W: upper bound of its warehouse capacity; W>O.

Suppose the firm wants to minimize its production and inventory

costs to meet the given exogeneous demand rate. The resulting
problem is mathematically equivalent to minimizing the following

expression:

oJ =1 [f( u (t)) h( I (t))]dt (I)

o subject to

[AW =(t):u( t) -d(t) ; I(0) =Io W, (2)0

O[a,] I>-0, [02] -<W, [;] u->0, (3)

where a dot denotes the first derivative with respect to time,

x ,(t) is the adjoint variable of (2), and p 1(t), 02 (t) and C(t) are

the Lagrange variables of the corresponding constraints as given

0 in (3).

I,-
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2.1 The Necessary Conditions for an Optimal Solution

To apply the maximum principle, see (9], we write the

Hamiltonian function of (1) as

H=- f (u) -h( I)+A ( u-d) . (4)

The Lagrangian then will be

0 L=H-p 1(u-d)+p 2 (d-u)+ u. (5)

The following necessary conditions hold (see (9]) for an optimal

solution:

o
(aL/a u)=O=-f' (u)+x +0 1-P2 ,  or

0
,Uf if X+Ol-P2<f'(O)(6o u:t if(6)

tg(x +PI- P2 )  if X+g) -P2 >f ' (0)
o~

where

) g=(f,) -1 (7)

which it may be noted from the assumption on f, is a strictly

increasing nonnegative function; the adjoint equation satisfies,

0
=z-3L/3 I~h' (I) (8)

o

o and the transversality conditions are

X(T)>O and X(T)I(T)=O; (9)

o
the complementarity and nonnegativity conditions are

li, Pi, p 2 (W-I), 0 2  , cu=O, and oI' 1 2' >0;. (10)

0
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the adjoint variable X is continuous except

possibly at an entry or an exit to the boundary

conditions I(t)O or I(t):W, the variables I and (11)

1+0 1-02 are continuous everywhere, and moreover

1 I.oand p 2<0.

Note that tiw is an initial or entry time to I(t)=W if

I(tiw)<W and I(t. )=I(t.)=W, t is a final or exit time to
i w 1w fw

I(t)=W if I(t f)=I(t fw)=W and I(t )<W. The definitions of tio
fwfw fw i

and tfo are similar and are obtained by changing W to 0.

2.2 Optimal Policies for Three Possible Cases

There are only three different possible cases for the values

of I(t) for some time interval S. We shall discuss the optimal
0

policies in each of these cases.

.3 Case 1 O<(t)<W for all tcS

This implies p1=P2 O and

0

0 (u :0 and I:-d if X<f' (0)

4 (12)

u*:g(k) and 1:g(*)-d if x>f'(O)

Case 2 I(t):O and i(t):O for all tcS.

This implies

0

092=O, U =d, and f'(d): ,+pI. (13)
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0

Since i1<0, we have 1 ol<h'(I). Using (13), this case can occur

.only if

f"(d)d<h'(I) (1l)

Case 3 I(t)=W and 1(t)=O for all teS

This implies that

Pi=0, u =d, and f'(d)=X-p 2 .  (15)

From the fact that 62<0, we have the following conclusion:

Case 3 can happen only if

f"(d)d>h' (I).

Simple economic interpretations of Cases 2 and 3 are as

follows: In Case 2, f"(d)d<h'(I) implies f"(u)0<h'(O) because

uzd and I:O. Taking integral of both sides over any interval

(t , t2 )C S, we have

t t
f'(u(t ))-f'(u(t ))=I 2 f,'(u)0dtI 2 h'(O)dt~h'(O)(t2 -t I)2 1 -t t2

or (17)

f' (u(t2 ))< f'(u(t I ))+h'(0)(t 2 -t )•

In (17), f'(u(t2 )) is the cost of making an additional small

quantity at time t2 by producing it at time t2. On the other hand

) f'(u(t ))+h'(O)(t 2-t ) is the cost of making an additional small



3quantity available at time t2 by producing it at time tI and

storing it until time t2 , hence including an inventory cost

h'(O)(t2-t ). Therefore, if inequality (17) holds, then it is not

* worthwhile to build up inventory for the future, i.e., keeping the

warehouse empty is the optimal strategy. by a similar argument,

if f"(d)d>h'(I) holds then it is desirable to build up inventory.

*2.3 Theoretical Results

We shall characterize the optimal trajectories of the

problem. First, let us define

=f od(t)dt

which is the total demand during the planning period.

Theorem 1. The following three statements are equivalent:

1 (a) I0>70,

(b) I(T)>O and L(T)<f'(O),

(c) u (t)=O for all t.

0 Proof. We prove that (a) implies (b) only. Other

Oimplications are trivial. If I(T)>O then by (9) we have

X(T)=O<f'(0). If I(T):O then I0=0 and u =0 for all t. Hence,

x (T)<f' (0).
Corollary1 I 0<I 0 implies I(T)=0

'Proof. If I(T)>O then A(T)=O<f'(O). From Theorem 1, we have

Io O' which leads to a contradiction.

Theorem 2 We can conclude that 1<0 for all teo, T] under

each of the following cases:

@ (i) Io~
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1ii) 0<1 0 and f"(d)d<h'(I) for all tc[O, T]

Proof. Case (i) immediately follows form Theorem 1. We now

prove case (ii). Suppose not, i.e., I(t)>O in some interval (j,

* j+c)C(O,T]. This can happen only in Case 1 of Section 2.2.

Hence, i=g(x)-d>O in (j, j+c). Since f">O from the strictly

convexity of f we have that f' is a strictly increasing function.

Thus, from (7), g(x)-d>O if and only if x>f'(d). Because

X=h'(I)>d[f'(d)]/dt=f"(d)d for all t and x>f'(d) in (j,j+c)

we get x>f'(d) for all t>j. Therefore, I(t)>O for all t>j which

implies I(T)>O and leads to a contradiction to Corollary 1.

Corollary 2 Under the cases specified in Theorem 2, the

optimal path for I(t) is characterized by one of the following

three cases:

(a) I(t)>O for all t (This case can happen if and only if 10>iO),

(8) I(t)=O for all t (This case can occur if and only if 1o=C),

(c) I(t)>0 on [O,t I) and I(t)=O on [t1 ,T] (This case can happen

if and ony if O<OIo)

Next, we shall explore the case in which f"(d)d>h'(I), i.e.,

the case in which it pays to store inventory. For convenience, we

define the function

( A(+0 l-0 2) (t) (18)

Then we have the following results.

Theorem 3. If d is continuous and nondecreasing, then we

have:

-(1) 4 is continuous and nondecreasing,



(2) u is continuous and nondecreasing.

Proof. If O<I<W for all teS then by (12) we know that =x is

an increasing function because x=h'(I)>O. Otherwise, I=O or I=W

implies that :f'(d) is also a nondecreasing function by (13) and

(15). Since 0 must be continuous everywhere, see (11), we have

that * is continuous and nondecreasing.

By (6) and (7), we know that a continuous and nondecreasing

will imply a continuous and nondecreasing u because g is a

strictly function.

Corollary 3 If d is continuous and nondecreasing, then the

optimal control path for u (t) satisfies one of the following

three cases:

(
(I) u >0 for all t

(II) u >0 for all t

(III) u :0 for t<t0 and u >0 for t>t 0

(3 Proof. It immdeiately follows from Theorem 3.

Theorem 4 If f"(d)d>h'(I) for all tc[O,T] then we have the

following results: (1) I(t)>O almost everywhere on (O,T]. (2)
I

u t) will be one of the three cases as shown in Corollary 3.

Proof. f"(d)d>h'(I) implies Case 2 in Section 2.2 cannot

happen. Therefore, I(t)>0 almost everywhere on [0,T]. Again,

o f"(d)d>h'(I) implies d>O. Hence u (t) satisfies one of the three

cases shown in Corollary 3.

From Corollary 2 and Theorem 4, we can easily get the

* Ofollowing results:

Theorem 5 Assume 10<Y0 and t' is choosen so that

* f"(d)d>h'(I) for t<t' and f"(d)d<h'(I) for t>t', i.e., it pays to
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)store production before but not after t' Then the optimal path

for I(t) satisfies one of the following two cases:

(A) I(t)>O for all tc[O,T]

(B) There exists t2 _>t' such that I(t)>O on (O,t2 ) and I(t)=O on

Et2,T3.

Theorem 6 Assume 10<I 0 and t' is choosen so that

f"(d)d<h'(I) for t<t' and f"(d)d>h' (I) for t>t' , i.e. it pays to

store production after but not before t'. Then the optimal path

for I(t) satisfies one of the following three cases:

(a) I(t)>0 for all te[O,T],

(B) There exists t 3 _t' such that I(t)=O on [Ot 3 I and I(t)>O on

(t 3 , T),

(c) There exist t4<t5 <t' such that I(t)>O on [O,t 4 ), I(t)=0 on

[t4, t5], and I(t)>0 on (t5 ,T).

In general, the interval [0,T] will contain many subintervals

0 in which f"(d)d<h'(I) or f"(d)d>h'(I). By repeatedly applying the

results of Theorems 5 and 6 we can construct the solution by

piecing together different solutions obtained from applications of

these theorems.

0

20

9I
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)3. Strong Planning Horizon Theorem
I

If optimal production decisions during [O,t ] can be shown to

be completely independent of the data beyond t >t , then we call

t a strong planning horizon and t a strong forecast horizon.

In this section, we will obtain the strong planning and

strong forecast horizons for the problem.

Lemma 1. Let t and t be the two consecutive entries at

which inventory hits the boundary constraint. Furthermore, let

I~t )=0 and I(t )=W, or I(t )=W and I(t )=O. Suppose t <t

Then t is a strong planning horizon, and t is a strong forecast

horizon.

Proof. We will prove the case in which I(t )=W and I(t )=0.

By using an analogous argument we could prove the other case in

which I(t )=O and I(t )=W. We may assume, without loss of

generality, that t is the first time at which the process enters,

i.e., satisfies, the boundary condition I(t)=W. Let the optimal

value of x(O) for the original problem be denoted by x0 " If we

can prove that xt)=x +f t h'(I)dt on (Ot*) is still an optimal

solution to any problem having the same demand rate information as

the original problem on [O,t and regardless of its value after
mII

t , then we are done. If the new optimal value of x (0) were xo

with X.0 (x0 , then the new inventory level I<I on [O,t ] because

*>4=>u >u by using (6) and (7)

=>I=u -d>u -d=I.

Hence, I(t )<W. For an illustration see Figure 1. Since
I

$=X02=f'(d) on (t ,to ) where to is the time of exit from the

inventory constraint I(t):W, we know



02

0 <I

Thsipista n I on (tt0 Smlalw a

geto

This impliestht'>i I an 1>on tt) Siialwcn

t** . *
1<1, 1<1,t an=It d IW on Idt=It 2.~t0)

or I(t )<0 and leads to a contradiction. By using an analogous

argument we can prove that if the new optimal value of X~(0) were
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with >X0 then it leads to a contradiction again.
0 0

Theorem 7 (Strong Planning Horizon Theorem)

Let tiw and tfw be the initial and final times to I(t):W

respectively, i.e. I(t):W for tc[t iwt fw. Suppose tio is the

next time at which the inventory reaches I(t)=O boundary. Then

all t before tfw are strong planning horizons and all t after tio

* are strong forecast horizons, i.e. tfw is a maximal strong

planning horizon and tio is a minimal forecast horizon. The

Theorem also holds when 0 and W are interchanged.

o Proof. If tfw is not a strong planning horizon then there

exists a new optimal solution such that to (tiwtfw) is the new

exit form I(t)=W boundary. The reasons are as follows: t <tiw

o will contradict to Lemma 1 and t >tfw implies that tfw is a strong

planning horizon. Similarly, using the same arguments as in Lemma

1 we can prove that the new exit tO will lead to a contradiction.

* 4. A Forward Branch and Bound Algorithm

The solution is trivial if 1o>I 0. Therefore, we may assume,00
without loss of generality, that 10<1 O. Suppose j is a feasible

solution to problem (1) during [O,ti]. Then it is easy to show

(proof omitted) that a lower bound for this policy j during [0,T]

is

0
j(J) =O)+ h(I' )Jdt f(u)[T-ti], (19)

where

5=[fT ddt - I(ti)]/(T-ti), (20)
i
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U( j ) and I( j ) are the production rate and inventory level

* corresponding to the policy j, respectively. From (19) and (20),

we also have that J0 =f(u0 )T is a lower bound to the value of J
- *

where U0 =(I0 -10 )/T. On the other hand, u =d for all t is a

feasible solution to problem (I). Thus, Jo=h(Io)to+f T f(d)dt

to
where t is the solution of 1 d dt=I 0 , is an upper bound of J.
We are Row in a position to ppesent the algorithm. For

convenience, we shall say that the vertex v. is fathomed if and3

only if no further exploration from this vertex can be profitable.

Otherwise, we shall say that v. is unfathomed or alive.
3J

Forward Branch and Bound Algorithm

1) Step 0 (Initialization) Begin at the live vertex vo, where

-JJo 0 and J:Jo" Go to Step 1.

Step 1 (Branching) Assume that ti is the first entry time to the

constraint I(t)=W or I(t):O.

Case 1.1 Suppose that t. is the entry time of I=W. Then t

should satisfy the following equations and contraints:

A(t-i)=f (d(t )) (21)0i

t.

X(t)=A(t-)-f h'(I)dt for all t<t. (22)
1 t -1

W-Io>It g(x)-dldt>-I 0  for all t~t (23)

0

.. . .. .. ..1
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It

W-I =-f [g(X)-dldt (24)
0

f"(d(t i))dh'(W) at t-t (25)

If there exists one or more solutions, then we keep each such

solution as successor vertices of v0 and go to Case 1.2.

Otherwise, there are no solutions for this branch, terminate this

branch and go to Case 1.2.

Case 1.2 Suppose that ti is the entry of 1:0. Then t.

satisfies the same constraints as in Case 1.1, except that (24)

and (25) must be replaced by (26) and (27), respectively.

t.

1:01[g(x)-d]dt (26)

0

f"(d)d<h'(0) at t=t.*T (27)
1

Again, we keep all solutions as successor vertices of vo, if any,

and go to Step 3.

Step 2 (Fathoming by Bound) Check every new live vertex vj. If

J(J) as in (19) is larger than or equal to J, then the vertex v

is fathomed, i.e., no further exploration from this vertex can be

profitable. Go to Step 4.

Step 3 (Update Bound) Check each new live vertex v.. If t(J):T
3 i

and J(J)>j then the vertex v is fathomed. If t(J)=T and J(J)<J
(i

then let JJ( Go to Step 2.

* Step 4 (Branching) If no live vertices exist, go to Step 7;
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otherwise select a live vertex v.. Let t i  be the last time at

which I reaches to W or 0. If I(t J))=W then go to Step 5;

otherwise go to Step 6.

Step 5 Assume that tfw is the exit time from I(t)=W, and ti is

the next entry time of I=O or IzW. As in Step 1, we have two

cases.

Case 5.1 Suppose ti is the entry time to IO, and t fw<t.

Solving the following constraints, we can find the values of tfw

and t..1

X(tfw )-f'(d(tf)) (28)
fw - Lw

A ( t )=f (d(t i )  (29)

(t)-X(tfw ) ft h(I)dt fcr all t (tfwtw (30)

-W<Iff [g(x)-dldt<O for all tc(tfw, t i ) (31)3 f

3 f"(d)d>h'(W) for all te(t j ) , tf) (32)
i fw

-W=1 [ g(X )-dldt (33)tf w

,)

f"(d)d<h'(O) at t=tl T (34)

If above constraints have one or more solutions, then we save them
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as successor vertices of vj and go to Case 5.2. Otherwise,

terminate this branch and go to Case 5.2.

Case 5.2 Let ti be the entry time to I(t)=W. This case is

similar to Case 5.1, except that (33) and (34) are replaced by

(35) and (36), respectively.

O=1 i [g(l)-dldt (35)
tf w

i ) f"(d)d>h'(W) at t:t i  (36)

If there exist some solutions to (tfw, ti) in Case 5.1 or Case

5.2, then we keep them as successor vertices of v. and to to Step

3. Otherwise, v. is fathomed and go to Step 4.J3

Step 6 Assume that t is the exit time from I(t)=O, and ti is

the next entry time to I:O or I:W.
Case 6.1 Suppose that ti is the entry time to I=O. Solving

D the following constraints, we may get the values of t and t.

o (t f0+) :f (d(tf0)) (37)
f° I

0

x (ti):f' (d(ti)) (38)

0 1(t)-X(tf0+)ft h'(I)dt for all tc(tf0 , ti)(39)

fo 0f t

0
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0 <f t [g ( )-d dt<W for all tc(t fo, t ) (40)tf0
f

f"(d)d<h'(O) for all tc(t j ) , tf) (41)

0 =1 g(X )-dldt i o(42)

0f

f"(d)d<h'(O) at t=ti*T (43)

0
We keep all solutions as successors of vi, if any, and go to Case

0 6.2.

Case 6.2 Suppose that t is the entry time to I(t)=W.

Again, this case is similar to Case 6.1, except that we replace

0(42) and (43) by (44) and (45), respectively.

0

W :f [g(x)-d]dt (44)t ffo

f"(d)d>h'(W) at t=t i  (45)

If there exist any solutions to (tfo, ti ) in Case 6.1 or Case 6.2

0 then save them and go to Step 3. Otherwise, check whether (41) is

o satisfied by setting tfo=T or not. If yes, let I(t)=O on

(t - , T) be a feasible solution and go to Step 3. If not, v. is

0 fathomed and go to Step 4.

A Step 7 (Termination) J=J which is optimal.

0

0
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o To illustrate that the algorithm can find an optimal

solution, we will solve a simple numerical example.

An Example

Suppose that d(t):60+1Ot-t2 , T:1O, f(u)=u2 /2, h(I)=I,

W=125/6, and 10=17. We then have that f'(u)=u, f"(u)=1, gu)=u,

=1, dL10-2t, f"(d)d>h'(I) for t<4.5, and f"(d)d<h'(I) for t>4.5.

* Step 0 J0=f(15)010=1,125 and J0 =29,027

Step 1 Solving Case 1.1, we have

X(t7):f'(d(t i) )=60+10ti. 2

o Substituting the result into (22) and (24), we obtain

WI: 9ti tO ) 2_ t+t2]dt,

0

and ti=1. Let the vertex corresponding this case is vI. Next, we

find that there is not feasible solution to Case 1.2. and go to

O Step 3.

Step 3 t (I)=IvT and go to Step 2.oi
Step 2 J (1)<J and go to Step 4.

S Step 4 There is only one live vertex v1 , and I(t 1 ) )=W. Go

to Step 5.

Step 5 Solving (28)-(34) simultaneously, yields tfw= 2 and

Sti =7. Let v2 be the vertex corresponding to th:s case. Again, we

find that there are no feasible solutions to Case 5.2. Go to Step

3.

S t(2)=74T and go to Step 2.

Step 2 J(2)<J and go to Step 4 again.

Step 4 There exists only one live vertex v2, and I(t 2))O.

0
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Go to Step 6.

Step 6 There are no feasible solutions to both Case 6.1 and

6.2. Since f"(d)d<h'(O) for all tc[7, 10). We know that I(t)=O

on [7,10] is a feasible solution, let v3 be the corresponding

vertex to this, and go to Step 3.

Step 3 J: 10 [f(u*)+h(I )]dt, (46)

*68+t if t<1

where u' 74+t if 2<t<7 (47)

o1 60+10t-t 2  otherwise,

and

O 17+8t-9t2 /2+t3 /3 if t<1

125/6 if 1<t<2 (48)

L49/6+14t-gt 2 /2+t 3 /3 if 2<t<7

0O if 7<t<10.

o Go to Step 2.

Step 2 J(3)=J so that v is fathomed. Go to Step 4.

0 Step 4 There is no live vertex. Go to Step 7.

o. Step 7 J as in (46) is the optimal solution. This shows

that t=2 is a maximal strong planning horizon and t=7 is a minimal

strong forecast horizon, see Figure 2.

(0

0

0

0
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* 5. Conclusions

In this paper we have studied a general production inventory

model with convex costs and an inventory upper bound. We

*characterized the optimal trajectories and showed that there could

be strong planning and forecast horizons. When such horizons

exist, we showed that the problem can be decomposed into a set of

* smaller problems. In Section 5 we presented a forward branch and

bound algorithm which carries out this decomposition. The

algorithm is illustrated with a simple example.

o It would be possible to extend the results of this paper in

several different ways. For instance more general demand

functions could be considered. Also, if the state equation (2) is

oreplaced by I~u-d-kI, where k>O is the rate of spoilage of the

inventory, our strong planning horizon theorem is still true. The

other theorems in this paper, with suitable maJification, are also

* true.
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